Parallel Gauss Sieve Algorithm: Solving the SVP in the Ideal Lattice of 128 dimensions

نویسندگان

  • Tsukasa Ishiguro
  • Shinsaku Kiyomoto
  • Yutaka Miyake
  • Tsuyoshi Takagi
چکیده

In this paper, we report that we have solved the shortest vector problem (SVP) over a 128-dimensional lattice, which is currently the highest dimension of the SVP that has ever been solved. The security of lattice-based cryptography is based on the hardness of solving the SVP in lattices. In 2010 Micciancio et al. proposed a Gauss Sieve algorithm for heuristically solving the SVP using list L of Gauss-reduced vectors. Milde et al. proposed a parallel implementation method for the Gauss Sieve algorithm. However, the efficiency of more than 10 threads in their implementation decreases due to a large number of non-Gauss-reduced vectors appearing in the distributed list of each thread. In this paper, we propose a more practical parallelized Gauss Sieve algorithm. Our algorithm deploys an additional Gauss-reduced list V of sample vectors assigned to each thread, and all vectors in list L remain Gauss-reduced by mutually reducing them using all sample vectors in V . Therefore, our algorithm enables the Gauss Sieve algorithm to run without excessive overhead even in a large-scale parallel computation of more than 1,000 threads. Moreover, for speed-up, we use the bi-directional rotation structure of an ideal lattice that makes the generation of additional vectors in the list with almost no additional overhead. Finally, we have succeeded in solving the SVP over a 128-dimensional ideal lattice generated by cyclotomic polynomial x + 1 using about 30,000 CPU hours.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel Gauss Sieve Algorithm: Solving the SVP Challenge over a 128-Dimensional Ideal Lattice

In this paper, we report that we have solved the SVP Challenge over a 128-dimensional lattice in Ideal Lattice Challenge from TU Darmstadt, which is currently the highest dimension in the challenge that has ever been solved. The security of lattice-based cryptography is based on the hardness of solving the shortest vector problem (SVP) in lattices. In 2010, Micciancio and Voulgaris proposed a G...

متن کامل

Efficient (Ideal) Lattice Sieving Using Cross-Polytope LSH

Combining the efficient cross-polytope locality-sensitive hash family of Terasawa and Tanaka with the heuristic lattice sieve algorithm of Micciancio and Voulgaris, we show how to obtain heuristic and practical speedups for solving the shortest vector problem (SVP) on both arbitrary and ideal lattices. In both cases, the asymptotic time complexity for solving SVP in dimension n is 2. For any la...

متن کامل

Sieving for shortest vectors in ideal lattices: a practical perspective

The security of many lattice-based cryptographic schemes relies on the hardness of finding short vectors in integral lattices. We propose a new variant of the parallel Gauss sieve algorithm to compute such short vectors. It combines favorable properties of previous approaches resulting in reduced run time and memory requirement per node. Our publicly available implementation outperforms all pre...

متن کامل

Sieving for Shortest Vectors in Lattices Using Angular Locality-Sensitive Hashing

By replacing the brute-force list search in sieving algorithms with Charikar’s angular localitysensitive hashing (LSH) method, we get both theoretical and practical speedups for solving the shortest vector problem (SVP) on lattices. Combining angular LSH with a variant of Nguyen and Vidick’s heuristic sieve algorithm, we obtain heuristic time and space complexities for solving SVP in dimension ...

متن کامل

Shortest Vector from Lattice Sieving: a Few Dimensions for Free

Asymptotically, the best known algorithms for solving the Shortest Vector Problem (SVP) in a lattice of dimension n are sieve algorithms, which have heuristic complexity estimates ranging from (4/3) down to (3/2) when Locality Sensitive Hashing techniques are used. Sieve algorithms are however outperformed by pruned enumeration algorithms in practice by several orders of magnitude, despite the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013